

LPBF of CuCrZr parts: processability, microstructure, mechanical and thermal performances

Carlo Alberto Biffi¹, Jacopo Fiocchi¹, Stefano Boldrini², Ausonio Tuissi¹

¹ CNR ICMATE, Lecco, Italy. ² CNR ICMATE, Padova, Italy.

LPBF system (mod. MetalOne*), equipped with a 1kW fiber laser, was realized for printing high reflective materials, like copper based powders.

1) Processability of CuCrZr powder

Cubic full dense samples were built. The process optimization was carried out for maximizing the relative density (up to 99.3%).

2) Microstructure of CuCrZr as built parts

Columnar grains were observed, lying along the building direction (xz).

Spherical CuCrZr powder, whose chemistry reported in the table, was used.

Cr (wt.%)	Zr (wt.%)	Cu (wt.%)
0,5-1.2	0.03-0.3	Bal.

3) Mechanical and thermal behaviour of CuCrZr as built parts

Elongation to failuire is 30 % in strain. This value confirms limited residual defects in the 3D parts.

Thermal diffusivity is infleunced by the printing direction.

Contact:

Eng. PhD Carlo Alberto Biffi

Email: carloalberto.biffi@cnr.it
National Research Council of Italy,
CNR ICMATE, Via Previati 1E, 23900
Lecco, Italy.

Acknowledgements:

*This activity was carried out within the project CUTRED-Sistema Avanzato di Stampa 3D per Scambiatori di Calore in Leghe di Rame - BANDO SI4.0 2020", sponsored by Regione Lombardia.